超薄石英玻璃双面套刻加工技术解析:在厚度100μm以上的超薄石英玻璃基板上进行双面套刻加工,是实现高集成度微流控芯片与光学器件的关键技术。公司采用激光微加工与紫外光刻结合工艺,首先通过CO₂激光切割实现玻璃基板的高精度成型(边缘误差<±5μm),然后利用双面光刻对准系统(精度±1μm)进行微结构加工。正面通过干法刻蚀制备5-50μm深度的微流道,背面采用离子束溅射沉积100nm厚度的金属电极层,经光刻剥离形成微米级电极阵列。针对玻璃材质的脆性特点,开发了低温键合技术(150-200℃),使用硅基粘合剂实现双面结构的密封,键合强度>3MPa,耐水压>50kPa。该技术应用于光声成像芯片时,正面微流道实现样本输送,背面电极阵列同步激发光声信号,光-电信号延迟<10ns,成像分辨率达50μm。此外,超薄玻璃的高透光性(>95%@400-1000nm)与化学稳定性,使其成为荧光检测、拉曼光谱分析等**芯片的优先基板,公司已实现4英寸晶圆级批量加工,成品率>90%,为光学微系统集成提供了可靠的制造平台。微纳加工产业化能力覆盖设计、工艺、量产全链条,月产能达 50,000 片并持续技术创新。吉林发展MEMS微纳米加工

玻璃与硅片微流道精密加工:深圳市勃望初芯半导体科技有限公司依托深硅反应离子刻蚀(DRIE)技术,实现玻璃与硅片基材的高精度微流道加工。针对玻璃芯片,通过光刻掩膜与氢氟酸湿法刻蚀工艺,可制备深宽比达10:1、表面粗糙度低于50nm的微通道网络,适用于高通量单细胞操控与生化反应腔构建。硅片加工则采用干法刻蚀结合等离子体表面改性技术,形成亲疏水交替的微流道结构,提升毛细力驱动效率。例如,在核酸检测芯片中,硅基微流道通过自驱动流体设计,无需外接泵阀即可完成样本裂解、扩增与检测全流程,检测时间缩短至1小时以内,灵敏度达1拷贝/μL。此类芯片还可集成微加热元件,实现PCR温控精度±0.1℃,为分子诊断提供高效硬件平台。黑龙江MEMS微纳米加工资费柔性电极表面改性技术通过 PEG 复合涂层,降低蛋白吸附 90% 并提升体内植入生物相容性。

柔性电极的生物相容性表面改性技术:柔性电极的长期植入性能依赖于表面生物相容性改性,公司采用多层涂层工艺解决蛋白吸附与炎症反应问题。以PI基柔性电极为基底,首先通过等离子体处理引入羟基基团,然后接枝硅烷偶联剂(如APTES)形成活性界面,再通过层层自组装技术沉积PEG(聚乙二醇)与壳聚糖复合层,**终涂层厚度5-15nm。该涂层可使水接触角从85°降至50°,蛋白吸附量从100ng/cm²降至<10ng/cm²,中性粒细胞黏附率下降80%。在动物植入实验中,改性后的电极在体内留置3个月,周围组织纤维化程度较未处理组减轻60%,信号衰减<15%,而对照组衰减达40%。该技术适用于神经电极、心脏起搏电极等植入器件,结合MEMS加工的超薄化设计(电极厚度<10μm),降低手术创伤与长期植入风险。公司支持定制化涂层配方,可根据应用场景调整亲疏水性、电荷性质及生物活性分子(如生长因子)接枝,为植入式医疗设备提供个性化表面改性解决方案。
加速度传感器是很早广泛应用的MEMS之一。MEMS,作为一个机械结构为主的技术,可以通过设计使一个部件(图中橙色部件)相对底座substrate产生位移(这也是绝大部分MEMS的工作原理),这个部件称为质量块(proofmass)。质量块通过锚anchor,铰链hinge,或弹簧spring与底座连接。铰链或悬臂梁部分固定在底座。当感应到加速度时,质量块相对底座产生位移。通过一些换能技术可以将位移转换为电能,如果采用电容式传感结构(电容的大小受到两极板重叠面积或间距影响),电容大小的变化可以产生电流信号供其信号处理单元采样。通过梳齿结构可以极大地扩大传感面积,提高测量精度,降低信号处理难度。加速度计还可以通过压阻式、力平衡式和谐振式等方式实现。MEMS超表面对光电场特性的调控是怎样的?

MEMS技术的主要分类:光学方面相关的资料与技术。光学随着信息技术、光通信技术的迅猛发展,MEMS发展的又一领域是与光学相结合,即综合微电子、微机械、光电子技术等基础技术,开发新型光器件,称为微光机电系统(MOEMS)。微光机电系统(MOEMS)能把各种MEMS结构件与微光学器件、光波导器件、半导体激光器件、光电检测器件等完整地集成在一起。形成一种全新的功能系统。MOEMS具有体积小、成本低、可批量生产、可精确驱动和控制等特点。热压印技术支持 PMMA/COC 等材料微结构快速成型,较注塑工艺缩短工期并降低成本。四川MEMS微纳米加工平台
MEMS器件制造工艺更偏定制化。吉林发展MEMS微纳米加工
热敏柔性电极的PI三明治结构加工技术:热敏柔性电极采用PI(聚酰亚胺)三明治结构,底层PI作为柔性基板,中间层为金属电极,上层PI实现绝缘保护,开窗漏出Pad引线位置,兼具柔韧性与电学性能。加工过程中,首先在25μm厚度的PI基板上通过溅射沉积5μm厚度的铜/金电极层,利用光刻胶作为掩膜进行湿法刻蚀,形成10-50μm宽度的电极图案,线条边缘粗糙度<1μm;然后涂覆10μm厚度的PI绝缘层,通过激光切割开设引线窗口,窗口定位精度±5μm;***经300℃高温亚胺化处理,提升层间结合力(剥离强度>10N/cm)。该电极的弯曲半径可达5mm,耐弯折次数>10万次,表面电阻<5Ω/□,适用于可穿戴体温监测、心率传感器等设备。在医疗领域,用于术后伤口热敷的柔性加热电极,可通过调节输入电压实现37-42℃精细控温,温度均匀性误差<±0.5℃,避免局部过热损伤组织。公司支持电极图案的个性化设计,可集成热电偶、NTC热敏电阻等传感器,实现“感知-驱动”一体化,推动柔性电子技术在医疗健康与智能设备中的广泛应用。吉林发展MEMS微纳米加工
文章来源地址: http://dzyqj.jzjcjgsb.chanpin818.com/chuanganqisr/qtcgq/deta_27494119.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。