实现这些功能的技术中,图像处理基于AI图像处理板这一传感器。板卡具备快速图像处理识别的硬件能力,植入相应的AI算法,无人机就相当于装上了“智慧眼”,而且这个“智慧眼”居于高空,能够在一个定点,俯瞰大范围,实时监控货物的存放状态。远程控制技术基于网络通信,通过和图像处理板的结合,能够实现低延时低带宽的图像传输处理。在实际落地应用中,可以采用成都慧视开发的高性能图像处理板,其中RV1126系列的Viztra-LE026图像处理板,就是无人机的完美搭子。这款图像处理板具备2.0TOPS的算力,能够根据无人机型号进行接口定制,整体尺寸在40mm×40mm×10mm左右(核心板+接口板),小巧的外形即便是小型无人机也能够装上。此外,板卡整体功耗在4W左右,不会过多增加无人机的负担。慧视光电能够深度定制RV1126系列的目标识别模块。成都低功耗图像识别模块算法

利用图像处理技术实现导弹的远程打击是一项运用了比较长时间的技术,相比于现代化的电子控制,它具备低受干扰的特点,特别是无人机在军备领域的广泛应用,图像处理的作用重新受到重视。远程打击时,需要对整个弹的识别能力进行深度学习训练,不断的训练能够让AI更加聪明,让AI知道该打击什么,从而提升打击精度。在前期的试验印证阶段,需要进行大量反复的试验训练,通过在导弹前端植入导引头,给导弹装上眼睛,可以实时记录导弹打出后的视频画面,然后将大量的视频数据采集到一起用于分析改进。成都轨迹图像识别模块板低空经济图像处理怎么选合适的板卡?

但这也遇到很多难点,通常情况下,视频回传的延迟大概在200ms左右,随着大量的弹打出,视频传输所需带宽就面临压力,如何在通信带宽有限的情况下,保证视频顺畅、清晰、无卡顿地传输,是分析改进这个工作需要解决的前期难点。针对于这个问题,慧视光电利用GS弱网高清音视频传输系统和RK3588打造的Viztra-HE030图像处理板结合,推出了低延迟低带宽图传解决方案。在一个窄带收发信道内,例如在信道有效带宽0.5Mb/s~2Mb/s内,多路视频和交互控制共用一对收发信道,信道支持数据透传,外部系统可以使用该信道,传输任意格式的数据;可实时调整视频码率,在低至500K带宽情况下依然可以回传清晰流畅的图像。可以使设备飞的更远、走的更远;可实现视频中继转发;能够基于H265实时视频编码;可实现基于视频流的“人在回路低延迟控制”。基于普通60帧相机,实现15ms的低延迟编解码,加上数据链传输延迟时间在30ms左右,目前业界前列。通用性强,使用更加灵活,适用更多应用场景;支持多路SDI视频在低至500K带宽情况下的同时传输(1080P60FPS),彻底解决“带宽苦恼”;整体时延约60ms(含相机、编解码、显示,不含传输),实现实时控制、实时打击。
此前,九号电动车的自平衡技术一次次刷新人们的认知,而其中一款探索版车型,甚至加入了智能摄像头,能够识别行人、障碍物,自动规划行驶路线,达成自动驾驶的目的。很多人好奇这种怎么做到的,其实很简单,车辆内部摄像头安装了具备图像处理的传感器。这种传感器就是图像处理板,这类AI板卡在目标识别算法的赋能下,就能够对视野范围的物体进行AI分类识别,从而帮助车辆进行避障。像成都慧视开发的高性能AI图像处理板Viztra-HE030,采用的是RK3588开发而成,凭借其工业级的性能,6.0TOPS的算力,就能够在车辆行驶过程中的复杂环境下进行周边环境的快速AI识别分类。当然,算法的能力也十分关键,由于车辆行驶环境的不断变化,算法面临的识别画面也不断变化,如何精细的进行识别,关系到车辆的行驶安全。鸟类识别的模块定制。

在如今的作业中,无人机路面巡查替代传统的人工巡查,展现出巨大的效率优势。像高速施工工地这样的环境下,施工方为了保障施工安全,就需要对施工范围进行严格管控,传统的人工巡查效率低,受限于地形、时间等问题,容易出现盲点。相比人工,利用无人机进行AI识别则可以逐帧图像监测,即便是夜晚也能够利用红外传感器进行数据收集,几乎不会遗漏任何信息。而交通管理部门,则可以利用无人机快速到底事故地点进行疏导,缓解交通压力。慧视Viztra-LE034图像处理板可以用于低空经济领域。成都低功耗图像识别模块算法
无人机反制无人机的AI图像处理模块怎么选?成都低功耗图像识别模块算法
新疆地缘辽阔、日照丰富,因此是我国光伏储能发达的区域之一。为了保障光伏基地的正常运作,周期性的巡检必不可少,传统模式下需要人工一步一个脚印走出来,随着现在无人机的广落地应用,这种大面积大范围的巡检也迎来了效率的飞跃。光伏基地每隔一段地方就会有一个铁塔,这些“驻塔式”机巢就是无人机的“巢穴”,无人机从这里起飞,进行巡逻,再回到这里进行充电,循环往复。得益于智慧化的建设,这些巡检无人机有自主巡飞、自动巡检的能力,可完成以机巢为中心5公里范围内的输配电线路和变电设备网格化巡检任务。成都低功耗图像识别模块算法
文章来源地址: http://dzyqj.jzjcjgsb.chanpin818.com/chuanganqisr/sjtxcgq/deta_28301329.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。